Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(20)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37896713

RESUMEN

Since the rolling bearing fault signal captured by a vibration sensor contains a large amount of background noise, fault features cannot be accurately extracted. To address this problem, a rolling bearing fault feature extraction algorithm based on improved pelican optimization algorithm (IPOA)-variable modal decomposition (VMD) and multipoint optimal minimum entropy deconvolution adjustment (MOMEDA) methods is proposed. Firstly, the pelican optimization algorithm (POA) was improved using a reverse learning strategy for dimensional-by-dimensional lens imaging and circle mapping, and the optimization performance of IPOA was verified. Secondly, the kurtosis-square envelope Gini coefficient criterion was used to select the optimal modal components from the decomposed components of the signal, and MOMEDA was used to process the optimal modal components in order to obtain the optimal deconvolution signal. Finally, the Teager energy operator (TEO) was employed to demodulate and analyze the optimally deconvoluted signal in order to enhance the transient shock component of the original fault signal. The effectiveness of the proposed method was verified using simulated and actual signals. The results showed that the proposed method can accurately extract failure characteristics in the presence of strong background noise interference.

2.
Sensors (Basel) ; 22(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35890805

RESUMEN

Direction-of-arrival (DOA) estimation is the preliminary stage of communication, localization, and sensing. Hence, it is a canonical task for next-generation wireless communications, namely beyond 5G (B5G) or 6G communication networks. Both massive multiple-input multiple-output (MIMO) and millimeter wave (mmW) bands are emerging technologies that can be implemented to increase the spectral efficiency of an area, and a number of expectations have been placed on them for future-generation wireless communications. Meanwhile, they also create new challenges for DOA estimation, for instance, through extremely large-scale array data, the coexistence of far-field and near-field sources, mutual coupling effects, and complicated spatial-temporal signal sampling. This article discusses various open issues related to DOA estimation for B5G/6G communication networks. Moreover, some insights on current advances, including arrays, models, sampling, and algorithms, are provided. Finally, directions for future work on the development of DOA estimation are addressed.

3.
Sensors (Basel) ; 20(7)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272687

RESUMEN

In this paper, a type of effective electronic counter-countermeasures (ECCM) technique for suppressing the high-power deception jamming using an orthogonal frequency division multiplexing (OFDM) radar is proposed. Concerning the velocity deception jamming, the initial phases of the pulses transmitted in a coherent processing interval (CPI) are designed to minimize the jamming power within a specific range, forming a notch around the jamming in the Doppler spectrum. For the purpose of suppressing the range deception jamming and the joint range-velocity deception jamming, the phase codes of the subcarriers belonging to the OFDM pulses are optimized to minimize the jamming power, distributing some specific bands in the range and the range-velocity domain, respectively. According to Parseval's theorem, the phase encoding, acting as the coding manner of the OFDM subcarriers can ensure that the energy of each OFDM symbol stays the same. It is worth noticing that the phase codes of the OFDM subcarriers can influence the peak-to-average power ratio (PAPR). Thus, an optimization problem is formulated to optimize the phase codes of the subcarriers under the constraint of global PAPR, which can regulate the PAPRs of multiple OFDM symbols at the same time. The proposed problem is non-convex; therefore, it is a huge challenge to tackle. Then we present a method named by the phase-only alternating direction method multipliers (POADMM) to solve the aforementioned optimization problem. Some necessary simulation results are provided to demonstrate the effectiveness of the proposed radar signaling strategy.

4.
Sensors (Basel) ; 19(24)2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31835343

RESUMEN

Joint angle and frequency estimation is an important branch in array signal processing with numerous applications in radar, sonar, wireless communications, etc. Extensive attention has been paid and numerous algorithms have been developed. However, existing algorithms rely on accurately quantified measurements. In this paper, we stress the problem of angle and frequency estimation for sensor arrays using one-bit measurements. The relationship between the covariance matrices of one-bit measurement and that of the accurately quantified measurement is extended to the tensor domain. Moreover, a one-bit parallel factor analysis (PARAFAC) estimator is proposed. The simulation results show that the angle and frequency estimation can be quickly achieved and correctly paired.

5.
Sensors (Basel) ; 18(12)2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30513898

RESUMEN

In order to solve the problem of face recognition in complex environments being vulnerable to illumination change, object rotation, occlusion, and so on, which leads to the imprecision of target position, a face recognition algorithm with multi-feature fusion is proposed. This study presents a new robust face-matching method named SR-CNN, combining the rotation-invariant texture feature (RITF) vector, the scale-invariant feature transform (SIFT) vector, and the convolution neural network (CNN). Furthermore, a graphics processing unit (GPU) is used to parallelize the model for an optimal computational performance. The Labeled Faces in the Wild (LFW) database and self-collection face database were selected for experiments. It turns out that the true positive rate is improved by 10.97⁻13.24% and the acceleration ratio (the ratio between central processing unit (CPU) operation time and GPU time) is 5⁻6 times for the LFW face database. For the self-collection, the true positive rate increased by 12.65⁻15.31%, and the acceleration ratio improved by a factor of 6⁻7.


Asunto(s)
Identificación Biométrica/métodos , Cara/anatomía & histología , Reconocimiento Facial , Redes Neurales de la Computación , Algoritmos , Bases de Datos Factuales , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
6.
Sensors (Basel) ; 18(7)2018 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-30041500

RESUMEN

The convolutional neural network (CNN) has made great strides in the area of voiceprint recognition; but it needs a huge number of data samples to train a deep neural network. In practice, it is too difficult to get a large number of training samples, and it cannot achieve a better convergence state due to the limited dataset. In order to solve this question, a new method using a deep migration hybrid model is put forward, which makes it easier to realize voiceprint recognition for small samples. Firstly, it uses Transfer Learning to transfer the trained network from the big sample voiceprint dataset to our limited voiceprint dataset for the further training. Fully-connected layers of a pre-training model are replaced by restricted Boltzmann machine layers. Secondly, the approach of Data Augmentation is adopted to increase the number of voiceprint datasets. Finally, we introduce fast batch normalization algorithms to improve the speed of the network convergence and shorten the training time. Our new voiceprint recognition approach uses the TLCNN-RBM (convolutional neural network mixed restricted Boltzmann machine based on transfer learning) model, which is the deep migration hybrid model that is used to achieve an average accuracy of over 97%, which is higher than that when using either CNN or the TL-CNN network (convolutional neural network based on transfer learning). Thus, an effective method for a small sample of voiceprint recognition has been provided.

7.
Sensors (Basel) ; 18(7)2018 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-29958478

RESUMEN

Given that facial features contain a wide range of identification information and cannot be completely represented by a single feature, the fusion of multiple features is particularly significant for achieving a robust face recognition performance, especially when there is a big difference between the test sets and the training sets. This has been proven in both traditional and deep learning approaches. In this work, we proposed a novel method named C2D-CNN (color 2-dimensional principal component analysis (2DPCA)-convolutional neural network). C2D-CNN combines the features learnt from the original pixels with the image representation learnt by CNN, and then makes decision-level fusion, which can significantly improve the performance of face recognition. Furthermore, a new CNN model is proposed: firstly, we introduce a normalization layer in CNN to speed up the network convergence and shorten the training time. Secondly, the layered activation function is introduced to make the activation function adaptive to the normalized data. Finally, probabilistic max-pooling is applied so that the feature information is preserved to the maximum extent while maintaining feature invariance. Experimental results show that compared with the state-of-the-art method, our method shows better performance and solves low recognition accuracy caused by the difference between test and training datasets.

8.
Sensors (Basel) ; 17(4)2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28417926

RESUMEN

A novel scheme is proposed for direction finding with uniform rectangular planar array. First, the characteristics of noncircular signals and Euler's formula are exploited to construct a new real-valued rectangular array data. Then, the rotational invariance relations for real-valued signal space are depicted in a new way. Finally the real-valued propagator method is utilized to estimate the pairing two-dimensional direction of arrival (2D-DOA). The proposed algorithm provides better angle estimation performance and can discern more sources than the 2D propagator method. At the same time, it has very close angle estimation performance to the noncircular propagator method (NC-PM) with reduced computational complexity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...